SULMMER PREP

AP CAlCClladls AB/BC

With topics from Algebra and Pre-Calculus to

$$
\begin{aligned}
& \text { get you ready to the AP! } \\
& \text { (Key contains solved problems) }
\end{aligned}
$$

Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. 23 (8) and p.16-17(2730all).

Prepared by:
Mrs. Trebat
Fairfield Ludlowe High School
Fairfield, Connecticut
mtrebat@fairfield.k12.Ct.us

ALGEBRA TOPICS

LAWS OF EXPONENTS

- What you need to know:

Assume a and b are real numbers and m and n positive integers.
(i) $a^{m} \cdot a^{n}=a^{m+n}$
(ii) $(a b)^{m}=a^{m} \cdot b^{m}$
(iii) $\left(a^{m}\right)^{n}=a^{m n}$
(iv) $a^{-m}=\frac{1}{a^{m}}$
(v) $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

PRACTICE PROBLEMS (NO

Simplify:

1) $\left(2 c^{2} d^{3}\right)^{3}$
2) $\left(a^{2} b\right)\left(-3 a b^{3}\right)(-2 a b)^{-2}$
3) $r^{h-2}\left(r^{h+1}\right)^{2}$
4) Solve for $n: 3^{5 n}=3^{5}\left(3^{2 n}\right)^{2}$
5) $4^{n+3} \cdot 16^{n}=8^{3 n}$
6) Write in exponential form (no negative exponents): $\sqrt[3]{8 x^{6} y^{-4}}$
7) Write in simplest radical form: $\sqrt[4]{27} \cdot \sqrt[8]{9}$
8) Simplify. Give your answer in exponential form: $a^{\frac{1}{2}}\left(a^{\frac{3}{2}}-2 a^{\frac{1}{2}}\right)$
9) Using the property of exponents, show that $27^{\frac{4}{3}}-9^{\frac{3}{2}}=2 \cdot 3^{3}$ (without the help of $a<$, of course!)

Solve (algebraic solution!):
10) $(3 x+1)^{\frac{3}{4}}=8$
11) $9 x^{-\frac{2}{3}}=4$

FACTORING POLYNOMIALS

What you need to know:

- Perfect Square Trinomials: $\begin{aligned} & a^{2}+2 a b+b^{2}=(a+b)^{2} \\ & a^{2}-2 a b+b^{2}=(a-b)^{2}\end{aligned}$
- Difference of Squares: $a^{2}-b^{2}=(a+b)(a-b)$
- Sum of Cubes: $\quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- Difference of Cubes: $\quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

PRACTICE PROBLEMS - Factor completely:

1) $3 x^{2}-x-10$
2) $4 x^{2}+12 x-7$
3) $a^{2}-10 a+25$
4) $4 a^{2}-4 a b+b^{2}$
5) $25 x^{2}-16 y^{2}$
6) $3 x^{5}-48 x$
7) $x^{6}-y^{6}$
8) $64-z^{6}$
9) $8 p^{3}+1$
10) $x(y-2)+3(2-y)$
11) $x^{2}-6 x+9-4 y^{2}$
12) $(x+y)^{3}+(x-y)^{3}$
13) $6 x^{2}-7 x y-3 y^{2}$
14) $4 x^{3}+8 x^{2} y-5 x y^{2}$

SOLVING POLYNOMIAL INEQUALITIES

Example 1: $\quad x^{2}-4 x-5<0$
Solution: $\quad(x+1)(x-5)<0 \quad$ factor

The solution set of this conjunction is $\{x:-1<x<5\}$.
Example 2: $-2 x^{2}+8 x+10<0$

$$
-2(x+1)(x-5)<0 \quad \text { Factor }
$$

Make a sign chart; mark the zeros; pick a
 test point in each interval and plug it into the factored form to determine the sign of each interval
The solution set of this disjunction is: $\{x: x<-1$ or $x>5\}$

PRACTICE PROBLEMS

1) $x^{3}+7 x^{2}+10 x>0$
2) $x^{3}-16 x>0$
3) $\left(x^{2}-4 x\right)\left(x^{2}-4\right) \leq 0$
4) $x^{2}-x-12<0$

PRE-CALCULUS TOPICS

FUNCTIONS

You are given a polynomial equation and one or more of its roots. Find the remaining roots.

What you need to know:
(i) The Remainder Theorem: When a polynomial $P(x)$ is divided by $(x-a)$, the remainder is $P(a)$;
(ii) Factor Theorem: For a polynomial $P(x),(x-a)$ is a factor if and only if $P(a)=0$;
(iii) Use synthetic division when dividing a polynomial by a linear factor: long division will always work:
(iv) Odd Function: A function $f(x)$ is odd $\Leftrightarrow f(-x)=-f(x)$;
(v) Even Function: A function $f(x)$ is even $\Leftrightarrow f(-x)=f(x)$; Remarks: item (iv) means the graph of the function has rotational symmetry about the origin, and (v) means the graph has reflectional symmetry about the y-axis;

Puzzled - lete's try some...

Find the quotient and the remainder when the first polynomial is divided by the second. No calculators allowed!

1) $x^{3}-2 x^{2}+5 x+1 ; x-1$
2) $3 x^{4}-2 x^{3}+5 x^{2}+x+1 ; x^{2}+2 x$
3) Determine whether $x-1$ or $x+1$ are factors of $x^{100}-4 x^{99}+3$.
4) When a polynomial $P(x)$ is divided by $3 x-4$, the quotient is $x^{3}+2 x+2$ and the remainder is -1 . Find $P(x)$. (recall: $P(x)=($ divisor) \times (quotient) +remainder!)
5) You are given a polynomial equation and one or more of its roots. Find the remaining roots. $2 x^{4}-9 x^{3}+2 x^{2}+9 x-4=0$; roots: $x=-1, x=1$.

Verify algebraically whether the functions are odd or even.
6) $f(x)=5 x^{3}-x$
7) $h(x)=\frac{5}{x^{2}+1}$

FINDING THE ASYMPTOTES OF A RATIONAL FUNCTION

What you need to know:

- Vertical Asymptote: Set denominator $=0$ and solve it. For values of x near the asymptote, the y-values of the function "approach" infinity (i.e., the y-values get increasingly large...)
- Horizontal or Oblique Asymptote: when the values of x get very large (approach infinity), the y-values tend to the asymptote. Below is an example of a curve displaying asymptotic behavior:

A curve can intersect its asymptote, even infinitely many times. This does not apply to vertical asymptotes of functions.

- To find the horizontal or oblique asymptote, divide the numerator by the denominator. The asymptote is given by the quotient function.

PRACTICE PROBLEMS (No , please!)

1) For the functions below determine: a) the domain; b) the x-and y intercepts; c) the vertical, horizontal or oblique asymptotes; and d) whether $R(x)$ is even or odd (show algebraic analysis).
2) $R(x)=\frac{3 x^{2}-3 x}{x^{2}+x-12}$
3) $r(x)=\frac{3 x^{2}+5 x-2}{x^{2}-4}$. (explain what happens at $x=-2 \ldots$)
4) Consider $f(x)=\frac{8}{2+x^{2}}$. a) is f even or odd? b) explain why there are no vertical asymptotes; c) What is the domain of f ? Range? d) Given the equation of its horizontal asymptote.
5) Find a quadratic function $f(x)$ with y-intercept -2 and x-intercepts $(-2,0)$ and $\left(\frac{1}{3}, 0\right)$.

RATIONAL ALGEBRAIC EXPRESSIONS AND FUNCTIONS

What you need to know:
(i) A rational function is a function of the form $\frac{p(x)}{q(x)}$, where p and q are polynomial functions and $q(x) \neq 0$ for every x.
(ii) To simplify a rational expression, factor both numerator and denominator. Cancel out common factors.
(iii) To find the domain of a rational function: solve $q(x)=0$. The zeroes of the polynomial $q(x)$ must be excluded from the domain.
(iv) To find the zeroes of a rational function: set $p(x)=0$ and solve it. The zeros of $p(x)$ are the zeros of the polynomial function (provided they are not also zeros of the denominator $q(x)!$)

In \#1-3: Find (a) the domain of each function; and (b) the zeros, if any. No calculators, please!

1) $g(x)=\frac{2 x^{2}+3 x-9}{x^{3}-4 x}$
2) $g(x)=\frac{(x+3)(x-2)(x-1)}{x^{2}-6 x+8}$
3) $h(x)=\frac{x^{3}+x^{2}-x-1}{x^{3}-x^{2}-x+1}$

Simplify: (attention: just perform the indicated operation...)
4) $\frac{3}{x^{2}-5 x+6}+\frac{2}{x^{2}-4}$
5) $\frac{x^{2}}{x-1} \cdot \frac{x+1}{x+2} \div \frac{x}{(x-1)(x+2)}$
6) $\frac{\frac{x^{2}-y^{2}}{x+y}}{x^{4}-y^{4}}=$

Find the constants A and B that make the equation true.
7) $\frac{2 x-9}{x^{2}-x-6}=\frac{A}{x-3}+\frac{B}{x+2}$

Solve the fractional equations. If it has no solution, say so...
8) $\frac{3}{x+1}-\frac{1}{x-2}=\frac{1}{x^{2}-x-2}$
9) $\frac{5}{a^{2}+a-6}=2-\frac{a-3}{a-2}$

EQUATIONS CONTAINING RADICALS

Example 1: Solve

$$
\begin{aligned}
& 3 x-5 \sqrt{x}=2 \\
& 3 x-2=5 \sqrt{x} \quad \text { isolate the radical term } \\
& 9 x^{2}-12 x+4=25 x \quad \text { square both sides } \\
& 9 x^{2}-37 x+4=0 \quad \text { solve for } x \\
& (x-4)(9 x-1)=0 \\
& x=4 \text { or } x=\frac{1}{9} \quad \text { these are candidate solutions! }
\end{aligned}
$$

Now check each candidate above by plugging them into the original equation.
The only possible solution is $x=4$
PRACTICE PROBLEMS: Solve. If an equation has no solution, say so. (hint: sometimes you may have to square it twice...)

1) $\sqrt{2 x+5}-1=x$
2) $\sqrt{x-1}+\sqrt{x+4}=5$

FUNCTION OPERATIONS AND COMPOSITION; INVERSE FUNCTIONS

What you need to know:

- The composition of a function g with a function f is defined as:

$$
h(x)=g(f(x))
$$

The domain of h is the set of all x-values such that x is in the domain of f and $f(x)$ is in the domain of g.

- Functions f and g are inverses of each other provided:

$$
f(g(x))=x \quad \text { and } \quad g(f(x))=x
$$

The function g is denoted as f^{-1}, read as " f inverse".

- When a function f has an inverse, for every point (a, b) on the graph of f, there is a point (b, a) on the graph of f^{-1}. This means that the graph of f^{-1} can be obtained from the graph of f by changing every point (x, y) on f to the point (y, x). This also means that the graphs of f and f^{-1} are reflections about the line $y=x$. Verify that the functions $f(x)=x^{3}$ and $g(x)=\sqrt[3]{x}$ are inverses!
- Horizontal Line Test: If any horizontal line which is drawn through the graph of a function f intersects the graph no more than once, then f is said to be a one-to-one function and has an inverse.

Let's try some problems!
Let f and g be functions whose values are given by the table below. Assume g is one-to-one with inverse g^{-1}.

x	$f(x)$	$g(x)$
1	6	2
2	9	3
3	10	4
4	-1	6

1) $f(g(3))$
2) $g^{-1}(4)$
3) $f\left(g^{-1}(6)\right)$
4) $f^{-1}(f(g(2)))$
5) $g\left(g^{-1}(2)\right)$
6) If $f(x)=2 x^{2}+5$ and $g(x)=3 x+a$, find a so that the graph of $f \circ g$ crosses the y-axis at 23 .

TRIGONOMETRY

What you need to know:

- Trig values for selected angles:

Radians	Degrees	$\operatorname{Sin} x$	$\operatorname{Cos} x$	$\operatorname{Tan} x$
0	0°	0	1	0
$\pi / 6$	30°	$1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 3$
$\pi / 4$	45°	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
$\pi / 3$	60°	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\pi / 2$	90°	1	0	Und.

- Key Trig Identities - formulas you should know:
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $\tan ^{2} \theta+1=\sec ^{2} \theta$
(iv) $1+\cot ^{2} \theta=\csc ^{2} \theta$
(v) $\sin (x+y)=\sin x \cos y+\cos x \sin y$
(vi) $\sin (x-y)=\sin x \cos y-\cos x \sin y$
(vii) $\cos (x+y)=\cos x \cos y-\sin x \sin y$
(viii) $\cos (x-y)=\cos x \cos y+\sin x \sin y$
(ix) $\sin 2 \theta=2 \sin \theta \cos \theta$
(x) $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ or
$=2 \cos ^{2} \theta-1$
$=1-2 \sin ^{2} \theta$

Without using a calculator or table, find each value:

1. $\cos (-\pi)$
2. $\sin \frac{3 \pi}{2}$
3. $\cos \frac{7 \pi}{6}$
4. $\sin \frac{11 \pi}{6}$
5. $\cos \frac{5 \pi}{4}$
$6 \cdot \sin \left(-\frac{2 \pi}{3}\right)$
6. Find the slope and equation of the line with y-intercept $=4$ and inclination 45°. (the inclination of a line is the angle α, where $0^{\circ} \leq \alpha \leq 180^{\circ}$, that is measured from the positive x-axis to the line. If a line has slope m, then $m=\tan \alpha$).
7. Find the inclination of the line given the equation: $3 x+5 y=8$ (you'll need a calculator here...)

Solve the trigonometric equations algebraically by using identities and without the use of a calculator. You must find all solutions in the interval $0 \leq \theta \leq 2 \pi$:
9. $2 \sin ^{2} \theta-1=0$
10. $\cos x \tan x=\cos x$
11. $\sin ^{2} x=\sin x$
12. $2 \cos ^{2} x=\cos x$
13. $2 \cos ^{2} x+\cos x-1=0$
14. $\sin 2 x=\cos x$

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

LOGARITHMS - What you need to know...

- Definition of Logarithm with base b : For any positive numbers b and y with $\mathrm{b} \neq 1$, we define the logarithm of y with base b as follows: $\log _{b} y=x$ if and only if $b^{x}=y$
- LAWS OF LOGARITHMS (for $M, N, b>0, b \neq 1$)
(i) $\log _{b} M N=\log _{b} M+\log _{b} N$
(ii) $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N$
(iii) $\log _{b} M=\log _{b} N$ if and only if $M=N$
(iv) $\log _{b} M^{k}=k \cdot \log _{b} M$
(v) $b^{\log _{b} M}=M$
- The logarithmic and exponential functions are inverse functions.

Example: Consider $f(x)=2^{x}$ and $g(x)=\log _{2} x$. Verify that $(3,8)$ is on the graph of f and $(8,3)$ on the graph of g. In addition,
$f(g(x))=2^{\log _{2} x}=x$ and $g(f(x))=\log _{2}\left(2^{x}\right)=x$ which verifies that f and g are indeed inverse functions.

Evaluate. The first is to be used as an example. (No calculators, please!)

1. $\log _{4} 64=3$ (because $4^{3}=64$)
2. $\log _{5} \frac{1}{125}=$
3. $\log _{4} \sqrt[4]{4}=$
4. $\log _{\frac{1}{3}} 9=$
5. $\log _{\sqrt{5}} 125=$
6. $\log _{81} 243=$

Solve for x.
7. $\log _{x} 64=3$
8. $\log _{3}\left(x^{2}-7\right)=2$
9. $\log _{5}\left(\log _{3} x\right)=0$
10. $\log _{6}\left(\log _{4}\left(\log _{2} x\right)\right)=0$
11. $\log _{2}\left(\log _{x} 64\right)=1$
12. Show that $\log _{2} 4+\log _{2} 8=\log _{2} 32$ by evaluating the 3 logarithms. Make a generalization based on your findings.

Write the given expression as a rational number or as a single logarithm. (use the laws of logarithms above!)
13. $\log 8+\log 5-\log 4$
14. $\log _{2} 48-\frac{1}{3} \log _{2} 27$
15. $\frac{1}{3}(2 \log M-\log N-\log P)$
16. $\log _{8} \sqrt{80}-\log _{8} \sqrt{5}$

If $\log _{8} 3=r$ and $\log _{8} 5=s$, express the given logarithm in terms of r and s.
17. $\log _{8} 75$
18. $\log _{8} 0.12$
19. Solve for $x: \log _{2}\left(x^{2}+8\right)=\log _{2} x+\log _{2} 6$

Solve (no calculator please!)
20. $3^{x}=81$
21. $4^{x}=8$
22. $4^{x}=16 \sqrt{2}$
23. $2^{2 x}-2^{x}-6=0$ (hint: $2^{2 x}-2^{x}-6=\left(2^{x}\right)^{2}-\left(2^{x}\right)-6$)

Simplify (recall: the notation In stands for the natural logarithm base e)
24. a) $\ln e^{x}$
b) $e^{\ln x}$
c) $e^{2 \ln x}$
d) $e^{-\ln x}$

Solve for \times (answers can be left in terms of e).
25. $\ln x-\ln (x-1)=\ln 2$
26. $(\ln x)^{2}-6(\ln x)+9=0$

We conclude with the following definition:

EXPONENTIAL GROWTH MODEL:

Consider an initial quantity Y_{0} that changes exponentially with time t. At any time \dagger the amount Y after t units of time may be given by:

$$
Y=Y_{o} e^{k t}
$$

Where $k>0$ represents the growth rate and $k<0$ represents the decay rate.

27. Growth of Cholera

Suppose that the cholera bacteria in a colony grows according to the exponential model $P=P_{o} e^{k t}$. The colony starts with 1 bacterium and doubles in number every half hour. How many bacteria will the colony contain at the end of 24 hours?

28. Bacteria Growth

A colony of bacteria is grown under ideal conditions in a laboratory so that the population increases exponentially with time. At the end of 3 hours
there are 10,000 bacteria. At the end of 5 h there are 40,000 bacteria. How many bacteria were present initially?

The half-life of a radioactive element is the time required for half of the radioactive nuclei present in a sample to decay. The next problem shows that the half-life is a constant that depends only on the radioactive substance and not on the number of radioactive nuclei present in the sample.
29) Find the half-life of a radioactive substance with decay equation $y=y_{o} e^{-k t}$ and show that the half-life depends only on k. (hint: set up the equation $y_{o} e^{-h t}=\frac{1}{2} y_{0}$. Solve it algebraically for t !)

Conclusion: The half-life of a radioactive substance with rate constant $k(k>0)$ is

Half-life $=$ \qquad
30) Using Carbon-14 Dating

Scientists who do carbon-14 dating use 5700 years for its half-life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

