BruLnunc ulp on

Name:

Directions: Use pencil and the space provided next to the question to show all work. The purpose of this packet is to give you a review of basic skills. Please refrain from using a calculator!

Prepared by:
Mrs. Trebat
Fairfield Ludlowe High School mtrebat@fairfield.k12.Ct.us

BRUSHING UP ON BASIC ALGEBRA SKILLS

Mrs. Trebat
Name: \qquad DUE DATE: \qquad

Directions: Use pencil, show work, box in your answers.

Monomial Factors of Polynomials

A monomial is an expression that is either a numeral, a variable, or the product of a numeral and one or more variables. Example of monomials: 7, $x, 6 x^{2} y^{3}$.
A sum of monomials is called a polynomial. Some polynomials have special names:
Binomials (two terms): $3 x-5$ or $2 x y+x^{2}$
Trinomials (3 terms): $x^{2}+5 x-15$ or $x^{2}-6 x y+9 y^{2}$

Divide:

1) $\frac{24 x-12}{6}$
2) $\frac{8 x^{4}-4 x^{3}-6 x^{2}}{-2 x^{2}}$

Factor (monomials only): Example: $15 a-25 b+35=5(3 a-5 b+7)$
3) $7 a^{3}-21 a^{2}-14 a$
4) $5 a x^{2}-10 a^{2} x+15 a^{3}$

Simplify: Example:

5) $\frac{6 a+9 b}{3}-\frac{7 a+21 b}{7}=$
6) $\frac{x^{2} y-3 x^{2} y^{2}}{x y}+\frac{6 x y+9 x y^{2}}{3 y}=$

Multiplying Binomials Mentally

Write each product as a trinomial:
7) $(x-9)(x+4)=$
8) $(4-x)(1-x)=$
9) $(2 a+5)(a-2)=$
10) $(2 x-5)(3 x+4)=$

Find the values of p, q, and r that make the equation true.
11) $(p x+q)(2 x+5)=6 x^{2}+11 x+r$

Difference of Two Squares

You must use the shortcut below (do not "FOIL"!!!!)

$$
\begin{gathered}
(a+b)(a-b)=a^{2}-b^{2} \\
(\text { First }+ \text { Second }) \times(\text { First }- \text { Second })=(\text { First })^{2}-(\text { Second })^{2}
\end{gathered}
$$

Write each product as a binomial:
12) $(x+7)(x-7)=$
13) $(y+8)(y-8)=$
14) $(5 x+2)(5 x-2)=$
15) $(8 x-11)(8 x+11)=$
16) $(4 a+5 b)(4 a-5 b)=$
17) $\left(x^{2}-9 y\right)\left(x^{2}+9 y\right)=$

Now let's try reversing the process above... Factor:
18) $x^{2}-36=$
20) $25 a^{2}-1=$
19) $m^{2}-81=$
21) $49 x^{2}-9 y^{2}=$

Factor each expression as the difference of two squares. Then simplify.
Example: $x^{2}-(x-\underbrace{3)^{2}}_{\text {Apply the formula }}=[x-(x-3)][x+(x-3)]=3(2 x-3)$
22) $(x+4)^{2}-x^{2}=$
23) $9(x+1)^{2}-4(x-1)^{2}=$

Squares of Binomials and Perfect Square Trinomials

Every time you square a binomial, the same pattern comes up. To speed up the process, we should memorize:

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} \text { and }(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

A trinomials is called a perfect square trinomial if it is the square of a binomial. For example, $x^{2}-6 x+9$ is a perfect square trinomial because it is equal to $(x-3)^{2}$.

Write each square as a trinomial.
24) $(a-9)^{2}=$
25) $(x+7)^{2}=$
26) $(4 x-1)^{2}=$
27) $(5 a-2 b)^{2}=$

Decide if each trinomial is a perfect square. If it is, factor it. Otherwise, write not a perfect square.
28) $a^{2}+6 a+9=$
29) $y^{2}-14 y+49=$
30) $121-22 x+x^{2}=$
31) $9 a^{2}+30 a b+100 b^{2}=$
32) $49 x^{2}-28 x y+4 y^{2}=$
33) $25 x^{2}-15 x y+36 y^{2}=$
34) $a^{2} b^{2}-12 a b+36=$
35) $121-33 x^{2}+9 x^{4}$
36) Show that $a^{4}-8 a^{2}+16$ can be factored as $(a+2)^{2}(a-2)^{2}$.
37) Solve and check: $(x+2)^{2}-(x-3)^{2}=35$

Factoring Quadratic Trinomials

To factor a trinomial of the form $x^{2}+b x+c$, you must find two numbers, r and s , whose product is c and whose sum is b .

$$
x^{2}+b x+c=(x+r)(x+s)
$$

When you find the product $(x+r)(x+s)$ you obtain

$$
x^{2}+b x+c=x^{2}+(r+s) x+r s
$$

Example: Factor $x^{2}-2 x-15$.

a. List the factors of -15 (the last term).	Factors b. Either write them down or do this mentally.	of -15
factors Find the pairs of factors with sum -2 (the middle term). $1,-15$ -15 (discard) $-3,5$ 2 (discard) $3,-5$ -2 (keep)		

$$
\therefore x^{2}-2 x-15=(x-5)(x+3)
$$

Check the result by multiplying...
Factor. Check by multiplying (mentally).
38. $x^{2}+8 x+12=$ \qquad
39. $x^{2}-7 x+12=$ \qquad
40. $x^{2}-4 x+12=$ \qquad
41. $x^{2}-9 x+18=$ \qquad
42. $x^{2}-3 x-18=$ \qquad
43. $x^{2}+11 x+18=$ \qquad
44. $x^{2}-5 x-36=$ \qquad
45. $x^{2}-15 x+36=$ \qquad
46. $x^{2}-9 x-36=$ \qquad
47. $x^{2}+3 x-28=$ \qquad

Factoring General Quadratic Trinomials of the type $a x^{2}+b x+c$
Example: Factor $2 x_{4}^{2}+7 x-9=(2 x+9)(x-1)$
Factor:
48) $3 x^{2}+7 x+2$
49) $2 x^{2}+5 x+3$
50) $2 x^{2}-15 x+7$
52) $5 a^{2}-6 a-2$
54) $3 m^{2}+7 m-6$
51) $3 a^{2}+4 a-4$
53) $3 x^{2}-2 x-5$
55) $4 a^{2}-a-3$

Factor by Grouping

Example 1: $\quad 7(a-2)+3 a(a-2)=(7+3 a)(a-2)$
Notice that we "factored out" the common factor $(a-2)$
Example 2: $\quad 5(x-3)-2 x(3-x)$
Notice that $x-3$ and $3-x$ are opposites.
$5(x-3)-2 x(3-x)=5(x-3)+2 x(x-3)=(5+2 x)(x-3)$
56) $2 x(x-y)+y(y-x)$
57) $3 a(2 b-a)-2 b(a-2 b)$

Group and Factor:
58) $3 a+a b+3 c+b c$
59) $3 a^{3}+a^{2}+6 a+2$
60) $3 a b-b-4+12 a$

Key Concept:
Zero-Product Property
For all real numbers a and b :
$a \cdot b=0$ if and only if $a=0$ or $b=0$
A product of factors is equal to zero if and only if at least one of the factors is 0 .

Solve:
61) $(x+5)(x-3)=0$
62) $2 x(x-9)=0$
63) $(2 a-3)(3 a+2)=0$
64) $3 x(5 x+2)(x-7)=0$
65) $a^{2}-3 a+2=0$
66) $x^{2}-12 x+35=0$
67) $b^{2}=4 b+32$
68) $25 x^{2}-16=0$
69) $7 x^{2}=18 x-11$
70) $8 y^{3}-2 y^{2}=0$
71) $4 x^{3}-12 x^{2}+8 x=0$
72) $9 x^{3}+25 x=30 x^{2}$

Sample for items 73-74: $(a-1)(a+3)=12$
$a^{2}+2 a-3-12=0$
expand the left side; bring over 12; set it $=0$;
$(a-3)(a+5)=0$ combine like terms; factor it;
$a=3$ or $a=-5$
73) $(x+1)(x-5)=16$
74) $(2 z-5)(z-1)=2$

Simplifying Fractions - Follow the 2 examples below.

Example 1: Simplify $\frac{3 x+6}{3 x+3 y}$.
Solution: $\quad \frac{3 x+6}{3 x+3 y}=\frac{3(x+2)}{3(x+y)}$ Factor the numerator and denominator; look for common factors:

$$
=\frac{x+2}{x+y}, x \neq-y \quad \text { Cancel out common factor which is } 3 \text { : }
$$

Example 2: Simplify $\frac{x^{2}-9}{(2 x+1)(3-x)}$
Solution: $\quad \frac{x^{2}-9}{(2 x+1)(3-x)}=\frac{(x+3)(x-3)}{-(2 x+1)(x-3)} \begin{aligned} & \text { First factor the numerator: "pull out" a } \\ & \text { negative in the factor (} 3-x) \text { to make it a } \\ & \text { common factor with the numerator: }\end{aligned}$ $=-\frac{x+3}{2 x+1},\left(x \neq-\frac{1}{2}, x \neq 3\right) \quad \begin{aligned} & \text { exclude the first as it would make the } \\ & \text { denominator }=0 ; \text { exclude the } 2^{\text {nd }} \text { as } \\ & \text { it would make both numerator and } \\ & \text { denominator }=0 .\end{aligned}$

Simplify. Give any restrictions on the variable.
75) $\frac{5 x-10}{x-2}$
76) $\frac{2 a-4}{a^{2}-4}$
77) $\frac{(x-5)(2+7 x)}{(5-x)(7 x+2)}$
78) $\frac{x^{2}+8 x+16}{16-x^{2}}$

Multiplying Fractions

Multiplication Rule for Fractions

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \text { To multiply fractions, you multiply their numerators and multiply their denominators. }
$$

Note: You can multiply first and then simplify, or you can simplify first and then multiply.

Example: $\frac{x^{2}-x-12}{x^{2}-5 x} \cdot \frac{x^{2}-25}{x+3}=\frac{(x-4)(x+3)}{x(x-5)} \cdot \frac{(x-5)(x+5)}{x+3}$

$$
=\frac{(x-4)(x+5)}{x} \text { Notice how common factors were cancelled. }
$$

Simplify.
79) $\frac{a+2}{a^{2}} \cdot \frac{3 a}{a^{2}-4}$
80) $\frac{a^{2}-x^{2}}{a^{2}} \cdot \frac{a}{3 x-3 a}$
81) A triangle has base $\frac{3 x}{4} \mathrm{~cm}$ and height $\frac{8}{9 x} \mathrm{~cm}$. What is its area?

Dividing Fractions

Division Rule for Fractions: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \quad$ Example $: \frac{7}{9} \div \frac{2}{3}=\frac{7}{9} \cdot \frac{3}{2}=\frac{7}{6}$ To divide by a fraction, you multiply by its reciprocal!
82) $\frac{2+2 a}{6} \div \frac{1+a}{9}=$
84) $\frac{2 a+2 b}{a^{2}} \div \frac{a^{2}-b^{2}}{4 a}$
83) $\frac{x^{2}-1}{2} \div \frac{x+1}{16}=$
85) $\frac{4 x^{2}-25}{x^{2}-16} \div \frac{12 x+30}{2 x^{2}+8 x}=$

Adding and Subtracting Algebraic Fractions

Key Steps: (1) Find the Least Common Denominator (LCD);
(2) Re-write each fraction being added or subtracted with the same common denominator.
(3) Add or subtract their numerators and write the result over the common denominator.

$$
\begin{aligned}
\begin{aligned}
\frac{\text { Example: }}{6 x-30}+\frac{8}{9 x-45} & =\frac{3}{6(x-5)}+\frac{8}{9(x-5)} \quad \text { Factor out denominators to more easily identify LCD } \\
& =\frac{9}{18(x-5)}+\frac{16}{18(x-5)} \text { multiply the first fraction by } 3, \text { the second by } 2 \\
& =\frac{25}{18(x-5)} \text { or } \frac{25}{18 x-90}
\end{aligned}
\end{aligned}
$$

86) $\frac{4 x+3}{3}-\frac{7 x}{4}+\frac{x-3}{6}=$
87) $\frac{2}{x-3}+\frac{4}{x+3}=$
88) $\frac{x}{x^{2}-1}+\frac{4}{x+1}=$
89) $\frac{3 a}{a-2 b}+\frac{6 b}{2 b-a}=$
90) $\frac{x-11}{x^{2}-9}-\frac{x-7}{x^{2}-3 x}=$

brushing up on basic algebra skills - Solved Froblems

 Mrs. TrebatName: \qquad .-

Directions: Use penci! You must show work for credit. Your final answers must be clearly identified.

Monomial Factors of Polynomials

A monomial is an expression that is either a numeral, a variable, or the product of a
numeral and one or more variables. Example of monomials: $7, x, 6 x^{2} y^{3}$
A sum of monomials is called a polynomial. Some polynomials have special names
Binomials (two terms): $3 x-5$ or $2 x y+x^{2}$
Trinomials (3 terms): $x^{2}+5 x-15$ or $x^{2}-6 x y+9 y^{2}$
Divide:

1) $\frac{24 x-12}{6}=\frac{1 / 2(2 x-1)}{\mathscr{C}_{1}}=$
2) $\frac{8 x^{4}-4 x^{3}-6 x^{2}}{-2 x^{2}}=\frac{2 x^{2}\left(4 x^{2}-2 x-3\right)}{-3 x^{2}}$
$=4 x-2$
$=-4 x^{2}+2 x+3$

Factor: Example: $15 a-25 b+35=5(3 a-5 b+7)$
3) $\begin{aligned} & 7 a^{3}-21 a^{2}-14 a \\ & 7 a\left(a^{2}-3 a-2\right)\end{aligned}$
4) $5 a x^{2}-10 a^{2} \cdot x+15 a^{3}$

$$
5 a\left(x^{2}-2 a x+3 a^{2}\right)
$$

Simplify: Example:
$\frac{14 x-21}{7}-\frac{10 x-25}{5}=\underbrace{\frac{7(2 x-3)}{3}}_{\text {Factor }}-\frac{5(2 x-5)}{5}=2 x-3-2 x+5=2$
5) $\frac{6 a+9 b}{3}-\frac{7 a+21 b}{7}=\frac{\beta(2 a+3 b)}{\beta}-\frac{\nexists(a+3 b)}{\not p}=2 a+3 b-a-3 b=a$
6) $\frac{x^{2} y-3 x^{2} y^{2}}{x y}+\frac{6 x y+9 x y^{2}}{3 y}=\frac{x y(x-3 x y)}{x y}+\frac{3 x y(2+3 y)}{3 y}=$

$$
=x-3 x y+2 x+3 / x y
$$

$$
=3 x
$$

Multiplying Binomials Mentally

Write each product os a trinomial:
7) $(x-9)(x+4)=x^{2}-5 x-36$
8) $(4-x)(1-x)=4-5 x+x^{2}$
9) $(2 a+5)(a-2)=2 a^{2}+a-10$
10) $(2 x-5)(3 x+4)=6 x^{2}-7 x-20$

Find the values of p, q, and r that make the equation true
11) $(p x+q)(2 x+5)=6 x^{2}+11 x+r \quad \mid 2 p x^{2}+(5 p+2 q) x+5 q=6 x^{2}+11 x+r$ $\begin{aligned} & 2 p x^{2}+5 p x+2 q x+5 q=6 x^{2}+11 x+r\end{aligned} \rightarrow p \| \begin{aligned} & \text { Equating like Terms: } \\ & 2 p=6 \Rightarrow p=3 \quad 5 p+2 q=11 \quad 5(-2)=1\end{aligned}$ Difference of Two Squares

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

$$
(\text { First }+ \text { Second }) \times(\text { First }- \text { Second })=(\text { First })^{2}-(\text { Second })^{2}
$$

$$
\begin{gathered}
15+2 q=11 \\
2 q=-4 \\
q=-2
\end{gathered}
$$

Write each product as a binomia
12) $(x+7)(x-7)=x^{2}-49$
13) $(y+8)(y-8)=y^{2}-64$
14) $(5 x+2)(5 x-2)=25 x^{2}-4$
15) $(8 x-11)(8 x+11)=64 x^{2}-121$
16) $(4 a+5 b)(4 a-5 b)=16 a^{2}-25 b^{2}$
17) $\left(x^{2}-9 y\right)\left(x^{2}+9 y\right)=x^{4}-81 y^{2}$

Now let's try reversing the process above... Factor:
18) $x^{2}-36=(x+6)(x-6)$
19) $m^{2}-81=(m+9)(m-9)$
20) $25 a^{2}-1=(5 a+1)(5 a-1)$
21) $49 x^{2}-9 y^{2}=(7 x+3 y)(7 x-3 y)$

Factor each expression os the difference of two squares. Then simplify.
Example: $x^{2}-(x-3)^{2}=[x-(x-3)][x+(x-3)]=3(2 x-3)$

Apply the formula

22) $(x+4)^{2}-x^{2}=$

$$
\begin{aligned}
& =(x+4+x)(x+4-x) \\
& =(2 x+4) 4 \text { or } 4(2 x+4)
\end{aligned}
$$

23) $9(x+1)^{2}-4(x-1)^{2}=$

$$
\begin{aligned}
& =[3(x+1)+2(x-1)][3(x+1)-2(x-1)] \\
& =(3 x+3+2 x-2)(3 x+3-2 x+2) \\
& =(5 x+1)(x+5)
\end{aligned}
$$

Squares of Binomials and Perfect Square Trinomials

Every time you square a binomial, the same pattern comes up. To speed up the process, we should memorize:

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} \text { and }(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

A trinomials is called a perfect square trinomial if it is the square of a binomial. For example, $x^{2}-6 x+9$ is a perfect square trinomial because it is equal to $(x-3)^{2}$.

Write each square as a trinomial

24) $(a-9)^{2}=a^{2}-18 a+81$
25) $(x+7)^{2}=x^{2}+14 x+49$
26) $(4 x-1)^{2}=16 x^{2}-8 x+1$
27) $(5 a-2 b)^{2}=25 a^{2}-20 a b+4 b^{2}$

Decide if each trinomial is a perfect square. If it is, factor it. Otherwise, write
not a perfect square.
28) $a^{2}+6 a+9=(a+3)^{2}$
29) $y^{2}-14 y+49=(y-7)^{2}$
30) $121-22 x+x^{2}=(11-x)^{2}$
31) $9 a^{2}+30 a b+100 b^{2}=$ NOT A PERFECT SQuare
32) $49 x^{2}-28 x y+4 y^{2}=(7 x-2 y)^{2} \quad$ 33) $25 x^{2}-15 x y+36 y^{2}=$ NOT A PERFECT $\square!$
34) $a^{2} b^{2}-12 a b+36=(a b-6)^{2}$
35) $121-33 x^{2}+9 x^{4}$ NOT A PERFECT \square !
36) Show that $a^{4}-8 a^{2}+16$ can be factored as $(a+2)^{2}(a-2)^{2}$.

$$
a^{4}-8 a^{2}+16=\left(a^{2}-4\right)^{2}=[(a+2)(a-2)]^{2}=(a+2)^{2}(a-2)^{2}
$$

37) Solve and check: $(x+2)^{2}-(x-3)^{2}=35$

$$
\begin{gathered}
x^{2}+4 x+4-\left(x^{2}-6 x+9\right)=35 \\
4 x+4+6 x-9=35 \\
10 x-5=35 \\
10 x=40 \\
x=4
\end{gathered}
$$

$0=(\varepsilon-x)(G+x)$ (19
$\varepsilon=x, x$
$O=\varepsilon-x$
0

71) $\begin{aligned} 4 x^{3}-12 x^{2}+8 x & =0 \\ 4 x\left(x^{2}-3 x+2\right) & =0\end{aligned}$
$4 x \frac{(x-2)(x-1)=0}{\frac{x=0}{} \quad x=2 \quad x=1}$
Sample for items 73-74: $(a-1)$

$$
\left.\begin{array}{ll}
& \begin{array}{ll}
a^{2}+2 a-3-12=0 \\
(a-3)(a+5)=0 \\
a=3 \text { or } a=-5
\end{array} \\
& \text { expand the leff side; bring over } 12 \text {; set it }=0 \text { : }
\end{array}\right] \begin{array}{ll}
\text { 73) }(x+1)(x-5)=16 & \text { 74) }(2 z-5)(z-1)=2 \\
x^{2}-4 x-5=16 & 2 z^{2}-7 z+5=2 \\
x^{2}-4 x-21=0 & 2 z^{2}-7 z+3=0 \\
(x-7)(x+3)=0 & (2 z-1)(z-3)=0 \\
x=7 \text { or } x=-3 & z=1 / 2 \text { or } z=3
\end{array}
$$

Factoring General Quadratic Trinomials of the type $a x^{2}+b x+c$
Example: Factor $2 x^{2}+7 x-9=(2 x+9)(x-1)$

List all factors List factors of -9
Of $2 x^{2}$

$(4 a+3)(a-1)$

Example 1: $\quad 7(a-2)+3 a(a-2)=(7+3 a)(a-2)$ 54) $3 m^{2}+7 m-6$ $(3 m-2)($ Factor by Grouping

$$
\begin{aligned}
& \text { 55) } 4 a^{2}-a-3 \\
& (4 a+3)(a-1)
\end{aligned}
$$

56) $2 x(x-y)+y(y-x)=2 x(x-y)-y(x-y)=(x-y)(2 x-y)$ 57) $3 a(2 b-a)-2 b(a-2 b)=3 a(2 b-a)+2 b(2 b-a)=(2 b-a)(3 a+2 b)$ Group and Factor:
58) $3 a+a b+3 c+b c=(3 a+a b)+(3 c+b c)=a(3+b)+c(3+b)=$ $=(a+c)(3+b)$ 59) $\begin{aligned} 3 a^{3}+a^{2}+6 a+2=\left(3 a^{3}+a^{2}\right)+(6 a+2) & =a^{2}(3 a+1)+2(3 a+1)= \\ & =(3 a+1)\left(a^{2}+2\right)\end{aligned}$

Simplifying Fractions - Follow the 2 examples below.

```
Example 1: Simplify \(\frac{3 x+6}{3 x+3 y}\).
Solution: \(\quad \frac{3 x+6}{3 x+3 y}=\frac{3(x+2)}{3(x+y)}\) Factor the numerator and demominator: look for common factors:
\[
=\frac{x+2}{x+y}, x \neq-y \quad \text { Cancel out common factor which is } 3
\]
```

Example 2: Simplify $\frac{x^{2}-9}{(2 x+1)(3-x)}$
Solution: $\quad \frac{x^{2}-9}{(2 x+1)(3-x)}=\frac{(x+3)(x-3)}{-(2 x+1)(x-3)} \begin{aligned} & \text { First factor the numerator; "pull out" a } \\ & \text { negative in the factor }(3-x) \text { to nake it a }\end{aligned}$

$$
\frac{x^{-}-y}{(2 x+1)(3-x)}=\frac{(x+3)(x-3)}{-(2 x+1)(x-3)} \begin{aligned}
& \text { rirst factor the numerator; pull out } \\
& \text { negotive in the factor } \\
& \text { common factor with the numerator: }
\end{aligned}
$$

$$
=-\frac{x+3}{2 x+1},\left(x \neq-\frac{1}{2}, x \neq 3\right) \quad \begin{aligned}
& \text { excludde the first as it would make the } \\
& \text { denominator }=0 \text { e exclude the } 2 \text { 2dd as } \\
& \text { it would make both numerator and } \\
& \text { denominator }=0 .
\end{aligned}
$$

Simplify. Give any restrictions on the variable.
75) $\frac{5 x-10}{x-2}=\frac{5(x-2)}{x-2}=5$
76) $\frac{2 a-4}{a^{2}-4}=\frac{2(a-z)}{(a+2)(a-2)}=\frac{2}{a+2}$
$a \neq \pm 2$
γ nore!

$$
\text { 77) } \begin{aligned}
& \frac{(x-5)(2+7 x)}{(5-x)(7 x+2)} \\
&= \frac{(x-5)(2 x 7 x)}{-(x-5)(7 x+2)} \\
&=-1 \\
& x \neq 5, x \neq-2 / 7
\end{aligned}
$$

Multiplying Fractions

Multiplication Rule for Fractions
 $$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \text { To multiply fractions, you multiply their numerators and multiply their denominators. }
$$

Note: You can multiply first and then simplify, or you can simplify first and then multiply.

$$
\text { Example: } \begin{aligned}
\frac{x^{2}-x-12}{x^{2}-5 x} \cdot \frac{x^{2}-25}{x+3} & =\frac{(x-4)(x-3)}{x(x-5)} \cdot \frac{(x-5)(x+5)}{x-3} \\
& =\frac{(x-4)(x+5)}{x}
\end{aligned}
$$

Simplify.
79) $\frac{a+2}{a^{2}} \cdot \frac{3 a}{a^{2}-4}=$
80) $\frac{a^{2}-x^{2}}{a^{2}} \cdot \frac{a}{3 x-3 a}=$
$=\frac{a+2}{a^{2}} \cdot \frac{3 a}{(a+2)(a-2)}=$
$=\frac{(a+x)(a-x)}{a^{2}} \cdot \frac{a}{3(x-a)}$
$=\frac{3}{a(a-2)}$
$=\frac{-(a+x)(x-a)}{a} \cdot \frac{1}{3(x-a)}$
$=\frac{-(a+x)}{3 a}$ or $\sqrt{-\frac{a+x}{3 a}}$
81) A triangle has base $\frac{3 x}{4} \mathrm{~cm}$ and height $\frac{8}{9 x} \mathrm{~cm}$. What is its area?

$$
A=\frac{1}{2}\left(\frac{\beta x}{y y_{1}}\right)\left(\frac{\frac{2}{2}}{\not A_{3} x}\right)=-\frac{1}{3}
$$

Dividing Fractions

Division Rule for Fractions: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \quad$ Example $: \frac{7}{9} \div \frac{2}{3}=\frac{7}{9} \cdot \frac{3}{2}=\frac{7}{6}$
To divide by a fraction, you multiply by its reciprocal!

$$
\begin{aligned}
& \text { 83) } \begin{array}{l}
\frac{x^{2}-1}{2} \div \frac{x+1}{16}= \\
\frac{(x+1)(x-1)}{2} \cdot \frac{16}{x+4}=8(x-1) \\
\text { 85) } \frac{4 x^{2}-25}{x^{2}-16} \div \frac{12 x+30}{2 x^{2}+8 x}= \\
\frac{(2 x+5)(2 x-5)}{(x+4)(x-4)} \cdot \frac{2 x x(x+4)}{6(2 x+5)}= \\
=\frac{x(2 x-5)}{3(x-4)}
\end{array}= \\
& \frac{(2 x}{3}=
\end{aligned}
$$

Adding and Subtracting Algebraic Fractions

